
Computationally
Intensive Code

Distributed Interactive
Computing Environment

Quick Start

For those wishing to dive in and give DICE a
try before reading any explanation, try the
following :

Ø mkdir /usr/local/Dice
Ø cd /usr/local/Dice
Ø tar xvf dice.tar
Ø setenv DICE_ROOT /usr/local/dice
Ø source $DICE_ROOT/.dicerc
Ø dice

For those interested in a little background, read
on.

Introduction

The Distributed Interactive Computing
Environment (DICE) is a flexible toolkit for
developing high performance computing
applications. DICE also includes some canned
applications in the areas of Computational
Structural Mechanics, Computational Fluid
Dynamics and Computational Chemistry.

The purpose of DICE is to take advantage of
distributed computing resources; using each to
it’s full advantage, for the purpose it was
designed.

Typically, a computationally intensive code will
be run on a large high performance platform.
Graphical user interface and scientific
visualization , however , perform better on
resources with resources with robust graphical
facilities.

DICE allows the computationally intensive code
to run on a large parallel platform while
allowing the user to interactively interrogate the
runtime data from a graphics workstation. This
is accomplished by allowing the data to be
logically shared but physically distributed across
one or more platforms.

DICE consists of three major sections : Data
Organization, Scientific Visualization, and
Graphical User Interface tools. Combined with
existing or new computational codes, DICE is
used to develop a complete application
environment.

High
Performance
Computing
Platform

Graphical
Workstation

Platform

Shared Data

Graphical User Interface

Scientific
Visualization

Data Organization

UNIX

Organization

The foundation for DICE is a system known as Network Distributed Global Memory (NDGM). NDGM
presents one or more processes with a contiguous, unstructured memory buffer that may span the physical
memory of several machines.

On top of NDGM is the DICE Data Directory (DDD). This uses NCSA’s Hierarchical Data
Format to implement data structures on NDGM. The DICE Data Directory provides support for
structured and unstructured data as well as runtime information and grouping of datasets.

Graphical User Interface (GUI) development is accomplished via the Tcl/Tk scripting language. Support
for NDGM and DDD has been added to Tcl/Tk in addition to an object oriented drag and drop capability
and support for an OpenGL viewer.

Another important DICE component is scientific visualization. A number of data filters (isosurface
generators and data slicers) and a generalized viewing system called DICE Visualizer (DV) has been
developed to support scientific visualization within the environment.

DICE is a modular system. This allows separate portions of a DICE application to execute on the most
appropriate resource. For example, the computationally intensive portion may execute on a massively
parallel processor (MPP) while the visualization and GUI execute on a user’s workstation.

Three computational areas have currently been targeted for inclusion into DICE. A Computational Fluid
Dynamics code, Zns (Zonal Navier-Stokes), has been incorporated into an application as well as a
Computational Structural Dynamics code (CTH), and a Computational Chemistry Code All applications
allow real time interactive visualization of a running code in a distributed environment.

Distributed Shared Memory

NDGM is a client-server system that consists of multiple server processes and an Application
Programmers Interface (API) for clients. Each server maintains a section of a virtual contiguous buffer
and fields requests for data transfer and program synchronization. Clients use the API to transfer data in
and out of the virtual buffer and to coordinate their activity.

Calls to the API result in lower level messages being sent to the appropriate NDGM server which keeps
track of its piece of the total virtual buffer. The API translates the global memory address into a local
address which the server then transfers from its local memory.

Client programs use the API to access the virtual NDGM buffer as contiguous bytes. No structure is
placed upon the NDGM buffer; the application can impose any structure on this buffer that is convenient.
In addition, NDGM is designed to implement a system of applications in contrast to a single monolithic
parallel application. The API includes facilities to get and put contiguous memory areas, get and put
vectors of data, acquire and release semaphores, and to initialize and check into multiple barriers.

For synchronization purposes, the API provides barriers and semaphores. Checking into a barrier will
result in the process blocking until the barrier value reaches zero. Requesting a semaphore will block until
it is released by the client currently owning the requested semaphore.

All requests for data transfer and synchronization are handled by the NDGM server process. This is a
stand-alone program that waits for new connections from clients and services their requests.

Each server maintains a local memory buffer which maps into the virtual buffer address space. This local
buffer can be in one of three locations: local address space (obtained via malloc), system shared memory,
or a local file. If system shared memory is used, a client executing on the same physical machine as the
server accesses the shared memory instead of making requests to a server. This access is transparent to the
NDGM client application and results in faster data transfers. Using a file as the server's local storage,
allows NDGM servers to restart with their local memory already initialized.

Clients and servers run on top of a layered message passing interface. Similar in concept to well known
message passing interfaces like PVM or MPI, this layer provides a level of abstraction, freeing the upper
layers from the details of reading and writing data. The NDGM message passing layer has fewer facilities
than either PVM or MPI but is designed to pass NDGM data efficiently with minimal copying. This layer
provides calls to establish connections, send messages, probe for incoming messages, read messages, and
close connections.

The actual interprocess data transfer is accomplished by the "drivers". Current drivers include: TCP/IP
sockets, PVM, and Fifos. An Intel NX driver is currently available for use on the Intel Paragon. Each
driver has functions to open as a client, open as a server, read, write, and probe for incoming messages.
When possible, each driver also implements a "select" function in order to monitor several open
connections. A single NDGM system can mix nodes utilizing different drivers.

DICE Data Directory

NCSA has developed a data format and access routines for scientific datasets. The routines allow users to
create, read, write, and query large datasets. Support exists for structured, and unstructured datasets. In
addition, there are “Vgroups” which allow for the grouping of datasets.

NCSA’s Hierarchical Data Format (HDF) has been modified to allow support for NDGM. The I/O facility
known as the “Low Level H Interface” has been modified to read and write data from NDGM as well as
from disk files. To accomplish this, a Domain is prepended to the filename before it is opened. For
example, to open a disk file named data.hdf, the string “file:data.hdf” is passed to the HDF routines. To
put the same file in NDGM, the string “NDGM:data.hdf” is used.

The DICE Data Directory (DDD) is a layer of routines on top of HDF that further organizes the data.
DDD supports structured and unstructured data as well as hierarchical groupings of these datas into
directories. In addition, DDD supports a Control data which is intended for cooperative control of running
codes.

In addition to the base data types, DDD supports “data references”. Data References are subsets of base
data types that allow a level of abstraction that conceptually simplifies the dataset. For example, suppose
we have a block CFD values around a projectile. We have 5 values for each of a 100x100x100 dataset. So
the entire dataset is 100x100x100x5. We could define a data reference named “Pressure on surface” that is
100x1x100x1 that represents only the pressure on the surface of the projectile. This data can now be
referenced as a 2D dataset; the lower levels of DDD handle the mapping of requested access to actual
target data.

Graphical User Interface Tools

A major portion of DICE is dedicated to providing the user with a flexible but powerful Graphical User
Interface (GUI). A scripting language is used to access the various GUI tools. An unstructured scripting
language allows complex interfaces to be rapidly prototyped and promotes re-use of modules due to its
lack of strict typing. In contrast to structured, strictly typed languages like JAVA, scripting languages can
provide complex yet independent and reusable modules for non time critical applications like a GUI.
JAVA and ‘C’ with Motif execute faster than scripting languages and may be better for fixed, well

defined user interfaces. But for rapid prototyping and independent, malleable, reusable modules, a
scripting language is the right tool for the job.

Tcl/Tk is an popular scripting language available on a variety of platforms. Tcl (Tool Command
Language) provides basic language constructs like assignment, flow control, and I/O. Tk provides a
windowing system interface which allows the creation and management of widgets like buttons, labels and
scales.

Extensions to the Tcl/Tk language which are included in DICE are :

• Tix - Convenience widgets like FileBoxes and Tree widgets
• BLT - Drag and Drop facility, 2D graphs and extended I/O

Tcl/Tk allows for ‘C’ routines to be compiled into the interpreter for time critical functions. Support for
NDGM, HDF, DDD and the DICE Visualizer have been included in this fashion. This allows for time
critical functions be efficiently serviced while maintaining the advantages of using a scripting language.

Tcl/Tk in conjunction with Tix and BLT allow for the rapid development of complex GUIs. For example,
in addition to simple widgets like buttons and labels, there is a 2D plotting widget to support line graphs
within an interface. This widget allows the user to easily re-graph subsets of the data or to query specific
data points. This plotting widget is combined with a spreadsheet widget to give the user a complete data
query interface.

A major portion of the DICE GUI toolkit is dedicated to the “Drag and Drop” facility. This allows object
oriented interfaces to be designed and for extensive re-use of developed code. Objects, represented by
icons, can be selected , dragged and dropped onto targets in other windows of the interface. These objects,
known as “sources”, generally represent a DDD item. Sources contain all information necessary to
retrieve the underlying DDD item, but not the actual data. Targets generally represent functions that
operate on DDD items. For example, there is an information target that will display name, dimensions,
and other pertinent information about any source that is dropped.

The Drag and Drop interface allows generic tools to be developed that are not specific to any one
application. Tools for 2D plots and isosurfaces have been developed that will accept sources that
represents a DDD item. Any new GUI only need to reference these tools from a menu bar to incorporate
the functionality. In addition, this makes the operation of an isosurface generator in a flow code consistent
with the isosurface generator in a structural dynamics code.

Scientific Visualization

Scientific Visualization within DICE is achieved via the DICE Visualizer (DV) and a variety of data
filters. DV is a viewing system consisting of a world through which a scientist can steer, to investigate
visual objects that represent the data. The data filters are routines by which an application’s datasets can
be transformed into a meaningful visual objects. These scientific visualization components within DICE
have been specifically designed to enable the visualization of large datasets at interactive rates.

DV is designed to quickly visualize large volumes of data. This data is stored in the DDD in the form of
unstructured datasets and then read into DV where it is processed into display ready items (like polygons),
displayed and manipulated.

 The internal structure of DV is composed of 4 distinct modules: the object management module, the
graphics module, the navigator module and the input module. Conceptually, these modules have very
different functions; however to ensure that the entire system is fast and efficient, the modules maintain
close interactions via C routines within the Tcl/Tk interpreter.

 The object management module, is responsible for reading the data, creating, deleting and editing objects
and storing these objects in a hierarchical structure. The hierarchical structure used is very similar to
structure used by the DDD, thus the sharing and transfer of data between the two models is fast and
efficient. Objects supported by DV include a DIRETORY type, a POLYGON type, a SPHERE type, and a
CYLINDER type. Almost all drawing primitives including points, lines, circles and cones are subclassed
under one of the above object types. However, additional object types, such as text, will be incorporated
in the future.

The graphics module is composed of a plethora of OpenGL compatible subroutines. To allow for
platforms that do not support OpenGL directly, a library called MESA translates all OpenGL calls into
X11 compatible graphics. Some of the current features incorporated into the graphics include mapping
variable data scalars to the alpha channel and stereoscopic viewing. Both of these features will enhance
the depth perception associated with a scene to provide a more intuitive view into the data.

The navigator module provides an interface to navigate throughout a world by calling primitive viewing
transforms such as rotate, translate and scale. This world/navigator approach allows the user to
investigate the data by flying through the world much like a pilot in a flight simulator. Although more
complex than using the primitive viewing transforms directly, this approach provides a more versatile
viewing environment, especially when large numbers of visual objects are in the world. For example, a
scientist using the world/navigator paradigm, can intuitively position the view between objects to
investigate an area that might have been obscured had the primitive viewing paradigm been employed.

The input module processes user interactions from a variety of input devices, and makes appropriate calls
to routines in one of the other DV modules. The input module, like the graphics module, is designed to
handle multiple input drivers. Currently, keyboard, GUI, and mouse drivers are supported, in addition to
the 3D mouse and head tracker of the ImmersaDesk.

The data filters consist of isosurface generators, and data. The filters will generate unstructured data
objects which are written into the DDD, where they can be easily read by DV. They can be applied to a
specific timestep of data that has been written to the DDD during the execution of a DICE integrated
computational code. Thus, while the computational code continues to compute successive timesteps,
isosurfaces and cutting planes of the current timestep can be generated and visualized.

Application Interface

The DICE user interface consists of several major sections. The main section contains the DICE menu bar
which is used to control the main functions. From this menu bar the user can open DICE Data
Directories as sources of data and select action targets. This menu bar is also where the state of the DICE
navigator is saved and restored.

Below the menu bar is a tree that represents the current contents of the visualizer. DICE Visual Objects
can be dragged and dropped in order to add object s to the rendered scene.

DICE Menu BarVisualization Window Code Specific
Graphical

User Interface

Graphical
Interface to Dice
Data Directory in

NDGM or on
Filesystem

Target for Dice Data
Directory Items. Used

to generate
Visualization Objects

In the notebook section of the main DICE interface window are pages that allow the use to navigate
through the data and select drawing preferences. This is also where any code specific GUI is found. A
code specific interface usually has a vertical menu bar of its own that allows the user to read and write
setup files and to set runtime options.

Main Dice Menu Bar

Menu Item Function
File Restore Restore Visualization Parameters

Save Save Visualization Parameters
Save Image Write Current Scene to Image File
HTTP Services limited HTTP 1.0 requests
Connections Set parameters for remote connections
Quit Punt

Edit Add Add a new dataset to an existing DDD
Prune Delete an existing DDD dataset

Prefs NDGM Set NDGM Parameters
Region Set the default region for a structured dataset
Lighting Lighting parameters
Stereo Crystal Eyes stereo and Immersadesk control
Vis Windows Color and size of additional visualization windows

View Local New local Window
Remote New Remote Window
Tree New DVO tree
Viewer New Viewer

Tools NDGM Control and monitor all aspects of NDGM
Build Dataset Create a new DDD in NDGM or on Filesystem

Source File System DDD on filesystem
NDGM DDD in NDGM

Targets Information General Information Target
Spreadsheet List Data Values for all datasets
Graph 2D XY plot for structured datasets
Plane 3D computational plane of structured data
IsoSurface 3D surface of constant value

The visualization window is part of the initial DICE window set. This is an OpenGL window that allows
DICE to render three dimensional objects. If OpenGL is not present on the platform, DICE will
accomplish it’s visualization via X11 window primitives.

DICE is a drag and drop interface. The concept of data sources and data targets is important to
understand. Typically, a DICE Data Directory is a source. The DDD can exist in NDGM, on the
filesystem, or in both; it is transparent to the interface. Data targets are items like 3D plane generators, 2D
graphing interfaces, and isosurface generators.

The hierarchical list of data in the DDD is a metadata object that represents the underlying data. Items
from these lists are picked up and dragged into data targets. For example, the 2D graphing target accepts
structured datasets, subsets the data, and draws the values in an XY Plot.

Theory of Operation

DICE can be used as a stand alone visualization tool to slice and DICE 3D datastes but this is not it’s
primary function. Typically, DICE is used in concert with some other code to look at data as it is produced
or to provide a scaleable data format.

A typical DICE session consists of the following steps:
• Read a code specific input file to determine data structure size and nature.
• Initialize an NDGM segment.
• Setup a DICE Data Directory in the NDGM segment.
• Run a code that periodically writes data to the DDD in NDGM.
• Use the DICE drag and drop GUI to look at 2D plots, and 3D planes and

isosurfaces.

Zns Interface

The Zns interface is a graphical user interface to the Zonal Navier-Stokes computational fliud dynamics
implicit solver. On the Zns page are three major sections : the vertical menu bar, the runtime variable
selection and the engine connection section.

Setup of the flow code is accomplished via the menubar. The Setup menu allows the user to read and write
input files for the Zns code. These input files are ascii text files that are described in the Zns
documentation. The other major functions available through the Setup menu are the ability to initialize
NDGM and to produce a batch request file.

The batch request file is necessary when Zns is used on HPC platforms with a batch queue like NQE or
GRD. This file is a substitue for interactive requests sent by the GUI. If the file dicebatch.dat exists in the
current directory, a DICE compatible application will assume it to be a file containing update requests. At
a frequency specified in the file, the application will update the DDD in NDGM automatically. In this
fashion, NDGM and the application can communicate without user intervention.

The Edit menu is used to setup the Zns code. The first menu option allows the user to add zones that are
defined in Plot3D compatible grid files. These files are either binary, FORTRAN unformatted, or
formatted text. they can be single or multi-grid files.

The second function in the edit menu allows the user to specify calculation parameters. These are values
like free stream mach number, Reynolds number, and integration smoothing parameters. The parameters
can be specified globally, or on a per zone basis.

The third function in the edit menu is the ability to setup grid overlaps. These are either in a "Pegs" file,
in "Chimera files" or specified via the GUI. The GUI is expecting the user to specify exact overlaps in the
J, K or L direction. The GUI allows the user to add, modify, and delete these overlaps for each zone.
When the user presses the "add" button, the specified overlap is added to the list at the bottom of the GUI.
Double clicking on any of the listed overlaps, adjusts all sliders to reflect the parameters. The modify
button will change the specified overlap to reflect any changes.

List of Boundary
Conditions

Possible Boundary
Conditions

Boundary
Condition

specific
Parameters

Location

Zones

The final function available in the edit menu is boundary condition definition. This GUI allows the user to
specify all available boundary conditions for each zone. If there are any additional information required
for a specific condition; like wall temperature for the interpolated wall boundary condition, it is also
specified in this GUI. The add, modify, and delete buttons have the same function as in the overlap GUI.

The Run menu allows the user to connect to an executing Zns and to run the Zns code itself. When
running the code, the user has the ability to select the number of threads and the frequency at which
Plot3D compatible solution files are produced.

To run Zns from DICE follow these steps :
• execute “dice zns"
• read in a Zns input file and /or select zone information from the edit-grids menu item
• setup parameters from the edit-calculation parameters menu item
• specify grid overlaps from the edit-overlap menu item
• specify boundary conditions from the edit-boundary condition item
• configure NDGM from the setup
• configure-ndgm item
• select Run Zns from the run-zns menu item
• view planes and isosurfaces by using the drag and drop targets from the targets menu on the

main menu bar.

Zns Menu Bar Options

Menu Item Function
Setup Open Read in an existing Zns input file

Save Write a Zns input file
Create Batch Create a Dice request file
NDGM Configure NDGM for specifically Zns

Edit Grids Add additional zone geometry
Parameters Problem specific parameters
Overlaps Specify Grid Overlaps
Boundary
Conditions

Specify Boundary Conditions

Run Run Zns Run flow solver
Connect Connect to existing flow solver

CTH Interface

CTH is a computational structural mechanics code from Sandia National Laboratory. The MPI version has
been modified to interface with DICE and is named dicecth. The DICE interface to CTH is used to
initialize the NDGM buffer so that CTH can periodically update computed values.

CTHED has also been modified to work with DICE. This allows the user to read existing “.plt” files into
DICE in order to post process results. The modified CTHED is called dicecthrst and will only output
certain quantities.

 To use DICE with CTH :
• Select an “ogcth” file which was output from cthgen
• Choose which variable you wish to store in the DDD in NDGM

• Run dicecth and interactively request an update
 or

• Run dicecthrst with a batch update request file

Sandia has developed an input GUI for CTH written in Tcl/Tk. This interface has been incorporated into
the DICE CTH page. It has not yet been fully integrated into DICE. Until it’s fully integrated, use the
cthgen output file to setup NDGM.

Request
Geometry

to be
Included in

NDGM

Request that
Specific Energy
for Material 2

not be Included
in NDGM

DICE reads an input file in order to determine the number of materials and the domain dimensions. The
user is presented with a tree widget with which to select the variable that are to be stored into the DDD in
NDGM. DICE then creates an NDGM buffer of appropriate size and configured the DDD.

If running dicecthrst or running dicecth in a batch environment, the user needs to create a batch update
file. This tells the application what variable in the DDD to update and how often this update is to occur.
The use uses a tree widget to select which variable to update and sets the slider to the appropriate update
frequency. The filename “dicebatch.dat” is generally chosen as the name of the batch update file. This is
because so that not all DICE compatible applications need modify the input argument list.

At every requested cycle, each MPI CTH process updates the NDGM buffer with its portion of the data. In
this way the entire dataset is reconstructed from the various portions. Once updated, the dataset can be
interrogated with 2D plots and 3D surfaces.

CTH Menu Bar Items

Menu Item Function
Setup From CTH Input CTH input GUI from Sandia

From CTHGEN Output Setup NDGM from CTHGEN output file
Batch Update File Create DICE request file
NDGM Configure NDGM
Connect to CTH Connect to running CTH

Other

Through experience gained while incorporating into current applications, a DICE Runtime Library is
being developed. This reduces the effort to make other applications DICE compatible. Currently this
library deals with structured datasets but support for unstructured codes will be coming soon.

The DICE visualization tools are primarily designed for fast, runtime interrogation of large datastes. For
more traditional post processing of data, a more traditional scientific visualization tool like EnSight from
CEI can be used. The utility “dice_to_ensight” can be used to convert data in a DDD to EnSight6 format.

For more information and API references, please visit the DICE web page.

For Additional Information :

http://frontier.arl.mil/clarke/dice.html

DICE
Jerry A. Clarke
clarke@arl.mil
Raytheon E-Systems
U.S. Army Research Laboratory
Major Shared Resource Center (PET)

Jennifer J. Hare
jen@arl.mil
U.S. Army Research Laboratory
Scientific Visualization Team

Charles E. Schmitt
 erics@arl.mil
Network Computing Services Inc.
U.S. Army Research Laboratory
Army High Performance Computing Research Center

Zns
James P. Collins
pcollins@arl.mil
U.S. Army Research Laboratory

Harris L. Edge
edge@arl.mil
U.S. Army Research Laboratory

Jerry A. Clarke
clarke@arl.mil
Raytheon E-Systems
U.S. Army Research Laboratory
Major Shared Resource Center (PET)

CTH
Eugene Hertel
eshert@sandia.gov
Sandia National Laboratories
Computational Physics Research, Development

and Applications Dept.

